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a b s t r a c t

We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing
inter-subject brain variation. Manifold coordinates of each image capture information about structural
shape and appearance and, when a phenotype exists, about the subject’s clinical state. Our framework
incorporates subject meta-information into the manifold learning step. Apart from gender and age, infor-
mation such as genotype or a derived biomarker is often available in clinical studies and can inform the
classification of a query subject. Such information, whether discrete or continuous, is used as an addi-
tional input to manifold learning, extending the Laplacian Eigenmap objective function and enriching a
similarity measure derived from pairwise image similarities. The biomarkers identified with the pro-
posed method are data-driven in contrast to a priori defined biomarkers derived from, e.g., manual or
automated segmentations. They form a unified representation of both the imaging and non-imaging mea-
surements, providing a natural use for data analysis and visualization. We test the method to classify sub-
jects with Alzheimer’s Disease (AD), mild cognitive impairment (MCI) and healthy controls enrolled in
the ADNI study. Non-imaging metadata used are ApoE genotype, a risk factor associated with AD, and
the CSF-concentration of Ab1�42, an established biomarker for AD. In addition, we use hippocampal vol-
ume as a derived imaging-biomarker to enrich the learned manifold. Our classification results compare
favorably to what has been reported in a recent meta-analysis using established neuroimaging methods
on the same database.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Identifying imaging biomarkers for diseases such as schizophre-
nia or Alzheimer’s Disease (AD) is the focus of many neuroimaging
studies. This research is driven by the potential role of imaging bio-
markers as an important adjunct to traditional biomarkers, such as
psychological tests, in order to achieve more accurate and earlier
diagnoses. Imaging biomarkers are used to classify subjects into
different clinical categories (e.g. for differential diagnosis) or to
give indicators of disease severity or progression. Many of the
well-established biomarkers for dementia from magnetic reso-
nance (MR) images are based on traditional morphometric mea-
ll rights reserved.
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sures, such as the volume or shape of brain structures (Fox et al.,
2000; Lerch et al., 2008; Schuff et al., 2009; Chupin et al., 2009;
Wolz et al., 2010b) and their change over time (Freeborough and
Fox, 1997; Smith et al., 2002; Boyes et al., 2006; Leow et al.,
2007; Wolz et al., 2010c). More recently, models based on machine
learning techniques have been proposed which seek discriminating
features over the whole brain or within a defined region of interest
(Fan et al., 2007, 2008; Vemuri et al., 2008; Gerardin et al., 2009;
Wolz et al., 2010a). Finding a low-dimensional representation of
complex and high-dimensional data is a central problem in ma-
chine learning and pattern recognition. Many methods have been
proposed to learn the underlying low-dimensional space of intrin-
sically low-dimensional data lying in a high-dimensional space.
Linear models like principal component analysis (PCA) (Pearson,
1901; Hotelling, 1933; Jolliffe, 1986) and multi-dimensional scal-
ing (MDS) (Torgerson, 1958; Cox and Cox, 1994) have a long his-
tory for dimensionality reduction. More recently nonlinear
methods like principal curves, (Hastie and Stuetzle, 1989), ISOMAP
(Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis
and Saul, 2000) and Laplacian Eigenmaps (LE) (Belkin and Niyogi,
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2003) have been proposed to better model highly non-nonlinear
data. Van der Maaten et al. (2007) give a comprehensive overview
on dimensionality reduction techniques. Using the concepts of
dimensionality reduction, Aljabar et al. (2008) applied spectral
analysis (von Luxburg, 2007) to pairwise label overlaps obtained
from a structural segmentation to discriminate AD patients from
healthy controls. Focusing on intensity-based similarities between
MR brain images, Klein et al. (2010) used vectors defined by the
similarities of a given query subject with a cohort of training
images as features from which to learn a classifier. Computer vi-
sion applications, particularly for face recognition, also use pair-
wise similarities to learn a low-dimensional subspace and to
classify unseen images mapped to this space (Chen et al., 2005;
He et al., 2005; Zhao et al., 2007). These methods are typically lin-
ear, making it easy to transform data between image space into the
learned subspace, but this linearity can limit the ability to general-
ize to complex datasets. Indeed, recent work suggests that the
complex natural variation of brain images is best described by non-
linear models (Gerber et al., 2010; Hamm et al., 2010). We aim to
learn the manifold2 structure of brain images in healthy aging and
neurodegeneration by considering both clinically labeled and unla-
beled image data. Nonlinear dimensionality reduction of a set of
brain images with Laplacian Eigenmaps (LE) is based on pairwise im-
age similarities that can be evaluated either over the whole image or
in a region of interest (ROI). A weighted similarity graph is built that
represents neighborhood information in the image data set. With the
Laplacian of the graph, a low-dimensional embedding that respects
the input relations is determined. The LE objective function, which
is based on edge weights in the similarity graph, places more similar
images in the input space closer in the embedded space. Building on
this principle, we propose a method to extend the LE objective func-
tion in order to learn a manifold not only defined by pairwise image
similarities but also by some metadata available for the subjects un-
der consideration. Such metadata in a clinical setting can be discrete
(e.g. gender) or continuous (e.g. age). We propose to extend the sim-
ilarity graph defined in LE by a set of additional nodes representing a
number of discrete states or intervals of a continuous variable. The
weights from every subject to these nodes are defined based on
the subjects’ metadata. This groups subjects with similar metadata
closer in the manifold. The proposed approach is related to work
by Costa and Hero (2005) where binary label information in partially
labeled data sets is used to enforce constraints in a low-dimensional
manifold representation. Optimizing the extended LE objective func-
tion, results in an embedding that incorporates metadata and pair-
wise image similarities at the same time. The coordinates of a
particular subject in the low-dimensional space can then be re-
garded as encoding information about the shape and appearance
of the brain as well as the state of the meta-variable and thus about
clinically relevant differences across the population described by
both measures. Manifold coordinates can be interpreted as biomark-
ers defined by pairwise similarities as well as the embedded metada-
ta, and images with clinical labels can be used to infer information
about unlabeled images in their neighborhood within the learned
geometrical space. In this work we use support vector machines
(SVM) to perform classification of unlabeled subjects in the low-
dimensional manifold and evaluate the power of the manifold repre-
sentation to predict clinical variables by fitting a multiple linear
regression model of clinical data vs. manifold coordinates. The con-
tribution of this work can be summarized as follows: we propose a
method for the extraction of a unified biomarker combining imaging
information with non-imaging metadata. Such a unified representa-
tion makes its use for data analysis and for visualization in a poten-
2 In this paper, we use the terms ‘‘manifold learning/embedding’’ and ‘‘dimension-
ality reduction’’ interchangeably.
tial clinical application more powerful. The method can handle
discrete and continuous metadata and offers a natural way to deal
with incomplete information. Compared to classical biomarkers,
the proposed method is data-driven and only requires minimal a pri-
ori information. We evaluate the proposed method on brain MR
images from healthy controls, subjects with mild cognitive impair-
ment (MCI) and AD taken from the Alzheimer’s Desease Neuroimag-
ing Initiative (ADNI)3 (Mueller et al., 2005). We use the 420 subjects
for which a measurement of the cerebrospinal fluid (CSF)-concentra-
tion of the Ab1�42 peptide and the subject’s ApoE genotype are cur-
rently available. A decrease in the concentration of the Ab1�42

peptide that follows its accumulation into plaques is considered a
diagnostic biomarker for AD (Trojanowski, 2004) and the ApoE geno-
type has been shown to be a risk factor for the disease (Lehtovirta
et al., 1996). Besides non-imaging metadata, we also test the power
of automatically derived hippocampal volumes, a well-known bio-
marker for AD (Jack et al., 1999), as meta-information. We further-
more test the ability of the proposed method to combine different
metadata in a single manifold learning step.

2. Method

2.1. Image distance function

The manifold learning framework described in the following
builds on the definition of pairwise image distances between two
images Ii and Ij defined on a discrete domain X 2 R3. Souvenir and
Pless (2007) propose an image distance function for manifold learn-
ing based on a deformation-based metric and intensity differences.
The deformation-based part represents the shape difference be-
tween anatomical structures in two images and can be estimated
from the deformation that is needed to non-rigidly transform one
image to another. The intensity measure is based on the appearance
differences remaining after transforming one image to the other.
Assuming a transformation /ij : R3 ! R3 that transforms image Ii

to image Ij, the combined distance function is formulated as

Dij ¼ aDdef
ij ðIi; Ij;/ijÞ þ ð1� aÞDint

ij ðIi; Ij;/ijÞ ð1Þ

where a defines the influence of the shape- and appearance based
parts. A deformation-based metric to measure pairwise image dis-
tances can be obtained in the large deformation dipheomorphic
metric mapping (LDDMM) framework (Beg et al., 2005). In recent
work on manifold learning from brain MRI, this metric is estimated
in a small deformation setting using a single displacement field
u : R3 � R! R3 to represent / (Gerber et al., 2010; Hamm et al.,
2010; Aljabar et al., 2011). The deformation-based term in Eq. (1)
can then be defined as

Ddef
ij ðIi; Ij;/ijÞ ¼

X
x2X
kuijðxÞk2

2dx ð2Þ

where uij is the mean magnitude of the displacement vector field
between images Ii and Ij. The intensity-based term in Eq. (1) is de-
fined as the sum of squared differences between image Ii and the
deformed image Ij:

Dint
ij ðIi; Ij;/ijÞ ¼

X
x2X
ðIiðxÞ � Ijð/ijðxÞÞÞ

2
: ð3Þ
2.2. Manifold learning using pairwise image similarities

A set of N images {Ii : i ¼ 1; . . . ;N} is described by vectors of
intensities xi as X ¼ fx1; . . . ;xNg 2 RD, where D is the number of
voxels per image or region of interest (typically D > 1,000,000 for
3 www.loni.ucla.edu/ADNI.
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brain MR images). Assuming x1; . . . ;xN lie on or near an d-dimen-
sional manifoldM embedded in RD, a low dimensional representa-
tion Y ¼ fy1; . . . ; yNg with yi 2 Rd of the input images inMmay be
learned. We use Laplacian Eigenmaps (LE) (Belkin and Niyogi,
2003) to achieve the nonlinear dimensionality reduction

f : X! Y; yi ¼ f ðxiÞ:

An undirected weighted graph G ¼ hV ; Ei with N nodes V repre-
senting the images and edges E connecting neighboring nodes is
defined on X. Edge weights of E are defined based on pairwise im-
age similarities. A k-nearest neighbor graph is defined, where the
weight wij between nodes i and j is set to their image similarity
if they are in a local neighborhood and set to zero otherwise:

wij ¼ e�
DðIi Ij ;/ij Þ

2

t if i 2 N i or j 2 N j

0 otherwise:

(
ð4Þ

where distances are transformed to similarities using the heat ker-
nel as proposed in Belkin and Niyogi (2003) and N x describes the k
nearest neighbors of subject x. A low-dimensional representation
yi ¼ f ðxiÞ that respects the defined edge weights wij can be obtained
by minimizing the energy functionX

ij

kyi � yjk
2wij: ð5Þ

This energy function ensures that more similar images in the in-
put space are closer together in the embedded space. With the
diagonal degree matrix D ¼

P
jwij, this can be reformulated asX

ij

kyi � yjk
2wij ¼

X
ij

kyik
2 þ kyjk

2 � 2yT
i yj

� �
wij

¼
X

i

kyik
2Dii þ

X
j

kyjk
2Djj � 2

X
ij

yT
i yjwij

¼ 2YT LY ð6Þ

with the graph Laplacian L = D �W. Since L is positive semidefinite,
the minimization problem can be formulated as

argminYT LY
Y

YT DY ¼ 1

ð7Þ

where the constraint YT DY ¼ 1 removes an arbitrary scaling factor
in the embedding and prevents the trivial solution where all y’s
are set to zero (Belkin and Niyogi, 2003). Finding the yi’s that opti-
mize this objective function can be formulated in closed form as
finding the eigenvectors associated with the d smallest non-zero
eigenvalues of the generalized eigenvalue problem
Lm ¼ kDm: ð8Þ
2.3. Manifold learning incorporating non-imaging information

In many settings, an additional variable zi providing further
information on subject i may be available in addition to MR imaging
data. Such meta-information can inform judgments such as clinical
diagnosis. We propose a method to incorporate such information
into the manifold learning process (Section 2.2). The hypothesis is
that by using this additional information, a more accurate represen-
tation of the population can be obtained leading to a more reliable
biomarker in the low-dimensional space. Metadata available in a
clinical setting can be defined by discrete categories (two or more),
or by a continuous variable. Examples of discrete variables are gen-
der, blood- or genotype. Continuous variables can be, e.g., a subject’s
age, weight or measurements derived from a phenotype associated
with the disease of interest. In (Costa and Hero, 2005), graph G
describing the LE objective function in Eq. (5) is extended by two
nodes, each representing one of two classes available for training
data. Connecting each training subject with its respective class node
imposes the class differences in the training data on the manifold
structure. Assuming generalizability between labeled and unla-
beled nodes, a more accurate classification performance on the test
data is expected. Extending this idea, we propose to use metadata
available for all or a subset of subjects in contrast to the class labels
itself to enrich the low-dimensional representation. The concept of
the proposed method is illustrated in Fig. 1: in classic Laplacian
eigenmaps, graph G connects neighboring subjects to enforce simi-
lar images to be close in the embedding. In the proposed framework,
additional edges are defined that connect every subject to an addi-
tional node representing it’s metadata class. This enforces subjects
in the same class to be closer in the manifold. Metadata can be incor-
porated from one or more measures, each defining a number of dis-
crete classes or a continuous interval leading to a fuzzy-class
membership. Graph G is extended by M nodes bV representing the
metadata variable z and called support nodes in the following. By
connecting each image xi to the support nodes with weights defined
according to the value of zi, the distribution of the meta-variable will
influence neighborhoods in the low-dimensional representation. In
the discrete setting with zi 2 Zdiscr ¼ z1; . . . ; zM

� �
, the weight ŵim be-

tween subject i and the mth support node is defined by

ŵim ¼
1 if zi ¼ zm

0 otherwise

�
ð9Þ

For a continuous metadata variable zi 2 Zcont ¼ ½za; zb�, a set of
support nodes is defined, each representing a sub-interval of the
variable space z. The input space is subdivided into M subintervals
�zm 2 Zm

cont ¼ ½za;m; zb;m�;m ¼ 1; . . . ;M. Subintervals are defined by
percentiles of the variable interval, giving equal probabilities to
each �zm. Their bounds can then be defined as

za;m ¼ Pz ðm� 1Þ100
M

� �
zb;m ¼ Pz m

100
M

� � ð10Þ

where PzðxÞ gives the xth percentile of interval z. With the mean va-
lue lm ¼ 1

jZm j
P

z2Zm z of interval �zm, the continuous weight ŵim be-
tween subject i and the mth support noe is defined based on the
distance between zi and lm, grouping subject i closer to subjects
with a similar value of z:

ŵim ¼
1
c ð1þ ðzi � lmÞ2Þ�1

; if zi is available
0 ; otherwise

(
ð11Þ

where c is a normalizing constant to ensure
P

mŵim ¼ 1. The
weighting schemes in the discrete and continuous settings for the
case where an additional variable z is available for all images are
illustrated in Fig. 2. Incorporating the M support nodes bV and the
weights ŵim, leads to an extended Laplacian Eigenmaps (E-LE)
objective function

c
X

ij

kyi � yjk
2wij þ

X
im

kyi � ŷmk2ŵim ð12Þ

with ŷm representing the cluster center of state zm of a discrete var-
iable or of the interval �zm of a continuous meta-variable. As in clas-
sic Laplacian Eigenmaps, the first term maps subjects with a high
similarity wij close in the embedding space. In addition, subjects
are mapped close to the cluster centers of the groups of subjects
with similar metadata variable as represented by the weights ŵim.
The extended low-dimensional embedding space is described by

Y0 ¼ fŷ1; . . . ; ŷM; y1; . . . ; yNg; ŷm; yi 2 Rd: ð13Þ

In this embedding, the proximity of subject i to the mth group
(discrete or continuous) and its centroid ŷm is determined by the
weights ŵim defined by the metadata as well as image-based



Fig. 1. Concept of the proposed extension to Laplacian Eigenmaps (LE): in LE, a set of images is connected to it’s closest neighbors, enforcing similar images to be close in the
embedding (black edges). The proposed extension introduces additional edges in this similarity graph, connecting every subject to additional nodes representing metadata
classes (red and green) according to the subject’s class membership. This enforces subjects in the same metadata class to be closer in the embedding space. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Weights defined between image nodes xi and support nodes representing
metadata Z. In the discrete setting (left), equally weighted edges are defined
according to Eq. (9). In the continuous setting (right), weights to both additional
nodes are defined according to Eqs. (10) and (11). A higher weight is illustrated by a
thicker edge.
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weights wij. A low weight of parameter c arranges the subjects
mainly according to the metadata, whereas a high value of c is clo-
ser to the standard embedding with Laplacian Eigenmaps which
considers only pairwise image similarities. The influence, c has
on the embedding is illustrated in Fig. 3. In a synthetic example
pairwise similarities for 16 nodes are defined from a set of dis-
tances between points in 2D to arrange them in a grid-shaped
embedding when using standard Laplacian Eigenmaps. Every node
is associated with a randomly assigned meta-variable varying be-
tween zero and one which is encoded by the color in Fig. 3. In panel
(a) with c = 1, the embedding is dominated by the value of the
meta-variable. Panel (b) shows an embedding influenced by both
measures and panel (c) shows an embedding close to the one ob-
tained with LE for c = 50. With the N �M matrix cW defining the
weights between subject i and the M support nodes, an extended
weight matrix

W0 ¼
I 1

2
cWT

1
2
cW cW

 !
ð14Þ
is derived, where I is an M �M identity matrix. Following Eqs. (6)
and (8) to solve the generalized eigenvector problem associated
with the extended weight matrix, yields the embedding coordinates
which optimize the objective function in Eq. (12).

2.4. Extraction of biomarkers

Assuming the pairwise image similarities and the metadata var-
iable represent clinically relevant differences between clinical
groups of interest, a subject’s manifold coordinates yi can be used
as a biomarker to support inferences about their clinical state.

2.4.1. Classification
When aiming at classifying unlabeled subjects for which no clin-

ical label is available, information from labeled subjects can be used
to make a decision. Please note that ‘‘unlabeled’’ in this context re-
fers to the clinical label (e.g. AD, healthy control) that is to be pre-
dicted. Every subject (labeled or unlabeled) may or may not have
metadata associated with it that can be used to enrich the manifold
learning as described in Eqs. (9) and (11). When dealing with a two-
class problem, the coordinates of N0 labeled training images
fyj; djg; j ¼ 1; . . . ;N0 < N; yj 2 Rd with clinical labels dj 2 f�1; 1g
is used to train a classifier on the derived manifold coordinates
yj ¼ yj1; . . . ; yjd. Support Vector Machines (SVMs) minimize a
Lagrangian energy function which leads to the hyperplane

a � y � b ¼ 0 ð15Þ

in the manifold space that best separates the two subject groups
(Cortes and Vapnik, 1995). The location of embedding coordinates
of the N � N0 unlabeled images in relation to this plane may then
be used to classify them.

2.4.2. Regression
A continuous assignment can be achieved by, e.g., building a lin-

ear regression model between a clinical variable d̂j vs. manifold
coordinates yj1; . . . ; yjd:

d̂j ¼ a0 þ
Xd

i¼1

aiyji ð16Þ

Learning such a model from a subset of subjects for which clin-
ical labels exist, allows its application to unlabeled subjects and
predictions to be made about clinical information associated with
those subjects.



Fig. 3. First two embedding coordinates with varying influence of c. A high weight leads to an embedding similar to the one obtained with classic Laplacian Eigenmaps (c). A
very low weight embeds the images mainly based on metadata (a). A more balanced weighting results in an embedding influenced by metadata and image similarities (b).

4 Note that since the ADNI study is still ongoing it is likely that some subjects will
convert from the S-MCI group to the P-MCI group in the future.
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3. Data and results

The proposed method was evaluated by performing classifica-
tion in a large study on Alzheimer’s Disease (AD) and mild cogni-
tive impairment (MCI). The results are presented as follows:
Section 3.1 describes the image data used. The derived image sim-
ilarity used for manifold learning is described in Section 3.2. An
overview on the different experiments to incoroporate metadata
with the proposed method is given in Section 3.3. Sections 3.4
and 3.5 present classification and regression results. Section 3.6
compares the proposed method to other approaches for combining
imaging and non-imaging information in classification tasks.

3.1. Subjects

Images used to evaluate the proposed method were obtained
from the ADNI database (Mueller et al., 2005). In the ADNI study,
brain MR images were acquired at regular intervals after an initial
baseline scan from approximately 200 cognitively normal older
subjects (CN), 400 subjects with MCI, and 200 subjects with early
AD. A more detailed description of the ADNI study is given in
Appendix B. ADNI provides the ApoE genotype (determined by
the ApoE alleles carried) for all subjects. Humans carry two out
of three possible ApoE alleles (e2, e3, e4). Carriers of e4 have been
shown to have a higher risk of developing AD, while e2 carriers
have a lower risk (Lehtovirta et al., 1996). In addition an Ab1�42

protein analysis of cerebrospinal fluid (CSF) is available for a subset
of ADNI subjects. A decrease in the concentration of this protein
has been shown to be associated with a development of AD
(Trojanowski, 2004). In this work, we used the 1.5 T T1-weighted
baseline images of the 420 subjects for which a CSF analysis was
available. Out of 201 MCI subjects, 89 were progressive, i.e. were
diagnosed as converting to AD as of October 2010. We therefore
independently analyzed stable (S-MCI) and progressive (P-MCI)
subjects.4 Table 1 presents an overview of the subjects studied and
their metadata as well as their MMSE scores used for clinical diagno-
sis. In addition average hippocampal volumes (right + left) for the
different subject groups are displayed in the very right column. This
information is used as a derived imaging biomarker to enrich man-
ifold learning.

3.2. Pairwise image similarities

The image distance function described in Eq. (1) is used to de-
fine pairwise image similarities as defined in Eq. (4). Pairiwse
non-rigid registrations were performed using a deformation model
based on free-form deformations (FFDs) (Rueckert et al., 1999) in a
multi-resolution fashion with B-spline control point spacings of
20 mm, 10 mm, 5 mm and 2.5 mm. The first three resolution levels
where applied to all registrations between the 420 study subjects.
Based on the resulting deformation fields, the 50 closest neighbors
to every subject were identified using the distance measure in Eq.
(2). The registrations to these identified subjects were refined
using the final control point spacing of 2.5 mm. Based on the
resulting deformation fields and the transformed images, pairwise
image similarities to define the objective function in Eq. (5) are ob-
tained using Eqs. (1) and (4). To allow an accurate extraction of the
appearance-based distance measure in Eq. (3), intensities of trans-
formed images are normalized to the target image using a linear
regression model. The parameter t in Eq. (4) used to transform
image distances to similarities is set to the median of the measure
data so that it corresponds with the densest part of the data. The
medial temporal lobe and especially the hippocampus and



Table 1
Subject data of the study subjects are shown for the different groups. Non-imaging metadata in the form of ApoE genotype and Ab1�42 concentration as well as the derived
imaging metadata, hippocampus volume, are presented. Carriers of the ApoE e2/e4 alleles are shown. The remaining subjects only carry the e3 allele. There is no significant
difference in age between the clinical groups with an average age of 74.95 ± 7.03 years.

Subject data Non-imaging metadata Derived metadata

N (F) MMSE e2/e4 Ab1�42 (pg/ml) Hippo. vol. (cm3)

CN 116 (56) 29.12 ± 1.02 16/28 202.3 ± 57.5 4.53 ± 0.55
S-MCI 112 (36) 27.16 ± 1.75 9/49 178.9 ± 61.6 4.26 ± 0.59
P-MCI 89 (33) 26.64 ± 1.8 1/52 146.3 ± 46.30 3.93 ± 0.65
AD 103 (43) 23.55 ± 1.87 4/63 147.5 ± 45.8 3.92 ± 0.73
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amygdala have been shown to be predominantly affected by onset
and progression of MCI and AD (Dubois et al., 2007). We therefore
restricted the evaluation of pairwise similarities to a region defined
around both structures (see Fig. 4). This ROI is based on the defini-
tions of hippocampus and amygdala in the anatomical atlas
described in Hammers et al. (2003). Manually defined label maps
on 30 subjects were affinely aligned with the MNI152-brain T1
atlas (Mazziotta et al., 1995). A fused and dilated segmentation
was then transformed affinely to every target image to serve as
an ROI.

3.3. Experiments

Both discrete and continuous metadata were incorporated into
the manifold learning process to compare the resulting biomarker
to the one achieved with Laplacian Eigenmaps based on image sim-
ilarities only. ApoE genotype, which has been shown to be a risk
factor for AD (Lehtovirta et al., 1996), and the CSF-concentration
of Ab1�42, an established biomarker for AD (Trojanowski, 2004),
were used as non-imaging information. In addition, we used auto-
matically determined hippocampal volumes (Wolz et al., 2010b) as
a derived imaging biomarker to enrich the manifold learning pro-
cess. Furthermore, we evaluated the impact of adding support
nodes to more than just one meta-variable. In particular, we com-
bined CSF with hippocampal volume and CSF with hippocampal
volume and ApoE genotype. The following list gives an overview
of the different experiments performed:

I : Laplacian Eigenmaps (LE)
II : Extended LE (E-LE) with ApoE genotype

III : E-LE with Ab1�42

IV : E-LE with hippocampal volume
V : E-LE with Ab1�42 and hippocampal volume

VI : E-LE with Ab1�42, hippocampal volume and ApoE
genotype
Fig. 4. Orthogonal views of MNI152 space showing the ROI around hippo
The model parameters a (influence of shape- and appearance
based parts on image distance), k (no. of neighbors in the similarity
graph), d (dimension of manifold) and c (influence of metadata) are
set globally for all experiments. Their value is determined based on
418 ADNI baseline images that are not used in the evaluation be-
cause no CSF measurement is available. A detailed description of
these settings is given in Appendix A. In order to correct for age
as a confounding variable, a linear regression model was first esti-
mated to predict the manifold coordinates from the age of the sub-
jects. The residual after this prediction was then used for extracting
biomarkers. Fig. 5 shows exemplars of the projected embedding
onto the first two coordinate directions when using standard
Laplacian Eigenmaps (top panel) and the proposed method with
hippocampal volume as metadata (bottom panel). A separating
hyperplane between AD and control subjects as defined by SVM
is displayed in both cases. Better discrimination between the two
groups can be observed when using the proposed method espe-
cially for subjects close to the separating plane.
3.4. Classification

The manifold representations, obtained from standard LE
embedding and from the five experiments using the extended
version (E-LE) proposed in this work, are used to perform classi-
fication between the different clinical subject groups. For each
relevant pairing (AD vs. CN, S-MCI vs. P-MCI, CN vs. P-MCI), a
leave-25%-out cross-validation was performed using the image
set described in Section 3.1. Average classification rates after
1,000 runs are determined for every dimension d 2 f5;6;7g
(see Appendix A). To arrive at a more robust and generalizable
result, we report the average classification rates over these three
dimensions. Table 2 presents the correct classification rates for
all six experiments. For each experiment, the multiple runs
provide a distribution estimate for the corresponding classifica-
campus and amygdala used to evaluate pairwise image similarities.
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tion rate.5 For each pair of clinical groups, we used these distribu-
tions to carry out unpaired t-tests between the results of methods
I (LE) and IV (E-LE with ApoE, hippo. vol. and Ab1�42) with the
respectively remaining methods in order to estimate the signifi-
cance of any performance improvements when incorporating
metadata. Resulting p-values are presented in Table 2. For compar-
ison, correct classification rates when only using the different
sources of meta-information are presented in the bottom part of
Table 2.

3.5. Regression

The Mini-Mental State Examination is a psychological test to
screen for cognitive impairment. To test the ability of manifold
coordinates to predict clinical variables, we fit a multiple linear
regression model of MMSE vs. manifold coordinates. We use a
model that predicts MMSE from the first d manifold coordinates:
5 All estimated distributions passed a normality test using a Kolmogorov–Smirnov
test at a ¼ 0:05.
MMSE ¼ a0 þ
Xd

i¼1

aiyi: ð17Þ

We evaluated the model for d ¼ 1 to allow comparison with
work presented in Gerber et al. (2010) on regressing MMSE vs.
manifold coordinates in ADNI. Residuals and correlation of the
regressed values for the manifolds defined in experiments I–VI,
are displayed in Table 3. It can be observed that adding metada-
ta leads to lower residuals and an improved correlation.

3.6. Alternative approaches to incorporate metadata

There are several alternative approaches to perform classifica-
tion based on multiple measurements or to learn a manifold based
on more than one similarity measure. In this Section we consider
two obvious choices of alternatives:

3.6.1. Concatenation of feature vectors in a SVM-based classification
When performing SVM-based classification, an extended fea-

ture vector f i ¼ fyi; zig concatenating the manifold coordinates of
subject i; yi with its meta-variable zi can be defined. Classification
can then be performed in the resulting dþ 1 dimensional space.
Table 4 shows classification results using this approach for ApoE
genotype, Ab1�42 concentration and hippocampal volume. In addi-
tion, p-values for the differences between these results and the rel-
evant results in Table 2 are presented. While in most comparisons,
the proposed method achieves the same accuracy as the concate-
nation approach, an improved classification accuracy can be ob-
served for the identification of P-MCI subjects. Adding ApoE
genotype to the manifold coordinates obtained with LE leads to a
better accuracy than the proposed scheme with a unified
biomarker.

3.6.2. Learning a low-dimensional manifold from a combined
similarity measure

The similarity between two instances zi; zj 2 Zc of a continuous
variable can be defined as ŝij ¼

absðzi�zjÞ
maxðZcÞ . With the intensity-based

similarity sij, the edge weight used for manifold learning with LE
(Eqs. (5)–(8)) can then be defined using a combined similarity
measure:

wij ¼
sij þ bŝij; if i 2 N i or j 2 N j

0; else:

�
ð18Þ

where N x describes the n nearest neighbors to subject x and b de-
fines the relative influence of the two similarity measures. We eval-
uated the classification performance when using this approach to
define an LE embedding for ŝij defined by hippocampal volume
and Ab1�42 concentration alternatively. Varying b 2 ½0; 7� and apply-
ing SVM-based classification on the resulting manifold coordinates
with the procedure described in Section 3.4, results in the classifica-
tion rates displayed in Fig. 6.

3.7. Summary

The preceding sections describe different experiments per-
formed to evaluate the proposed method. Several metadata vari-
ables were used in combination with pairwise image similarities
to learn low-dimensional manifold representations of a set of
420 images from the ADNI database. The metadata used include
ApoE genotype, the concentration of the Ab1�42 peptide, hippocam-
pal volume, and the combination of all measures. Section 3.4 pre-
sents results from using manifold-representations to classify
individual subjects according to clinical subject groups. A signifi-
cantly improved classification accuracy can be observed when
incorporating metadata. In Section 3.5 MMSE data is regressed



Table 2
Correct classification accuracy (ACC), sensitivity (SEN) and specificity (SPE) (%) for classic Laplacian Eigenmaps (LE, I) and the extended version E-LE incorporating different types
of meta-information (II–VI). P-values for the difference between methods I–VI and method I ðp1Þ and method VI ðp2Þ are presented. � stands for p < 0.001 The results for method V
are significantly different from all other results with p < 0.001 – apart from method VI. The bottom rows of the table present classification rates when using different types of
metadata only.

AD vs. CN P-MCI vs. S-MCI P-MCI vs. CN p1 p2

ACC SEN SPE ACC SEN SPE ACC SEN SPE

I: LE 86 82 89 63 55 69 82 73 89 n.a. �/�/�
II: E-LE: ApoE 83 80 86 69 64 73 81 76 84 �/�/� �/�/�
III: E-LE: Ab1�42 87 84 89 68 65 70 84 81 87 �/�/� �/�/�
IV: E-LE: hippo. vol. 86 82 89 66 60 71 83 77 87 0.94/�/� �/�/�
V: E-LE: Ab1�42, hippo. vol. 88 85 90 67 64 70 87 87 88 �/�/� 0.006/�/0.63
VI: E-LE: Ab1�42, hippo. vol., ApoE 88 85 91 69 68 70 87 87 88 �/�/� n.a.
ApoE only 67 59 75 57 52 64 68 63 75 �/�/� �/�/�
Ab1�42 only 75 64 85 64 51 81 73 63 84 �/�/� �/�/�
Hippo. vol. only 74 74 74 61 58 62 72 73 70 �/�/� �/�/�

Table 3
Residuals and R2 statistics obtained from regressing the results of the MMSE vs. the
first manifold coordinate using a multiple linear model. An improvement of statistics
can be observed when incorporating metadata into the manifold learning process.

I II III IV V VI

Residual 1.86 1.85 1.85 1.85 1.85 1.82
R2 0.20 0.22 0.22 0.22 0.21 0.24

826 R. Wolz et al. / Medical Image Analysis 16 (2012) 819–830
from the manifold coordinates, observing improved regression sta-
tistics when incorporating metadata. Section 3.6 compares the pro-
posed data combination strategy to two approaches that combine
manifold learning with metadata: (1) an approach that defines a
Table 4
Classification accuracy (ACC), sensitivity (SEN) and specificity (SPE) when incorporating m
according methods (III, IV) in Table 2 are presented. �: p < 0.001.

AD vs. CN P-MCI vs. S-M

ACC SEN SPE p ACC

ApoE 84 80 88 0.02 64
Ab1�42 87 85 89 0.09 65
Hippo. vol. 86 81 89 0.76 63.7
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0

Fig. 6. Classification accuracy obtained from defining a combined similarity measure inc
learning. Results with hippocampal volume and Ab1�42 are presented over an increasing i
CN (blue), P-MCI vs. CN (red) and P-MCI vs. S-MCI (green). The dotted lines indicate t
metadata. (For interpretation of the references to color in this figure legend, the reader
unified similarity measure from two separate input measures
(imaging and metadata) and (2) a method that concatenates a fea-
ture vector obtained from manifold learning with some metadata
before performing SVM-based classification. The proposed method
compares favorably to both other combination strategies.
4. Discussion

We have presented a method to extract biomarkers from MR
brain images, combining imaging information with non-imaging
metadata. These biomarkers are defined in a low-dimensional
manifold space that is learned from image-based similarities and
non-imaging metadata. Laplacian Eigenmaps were used to derive
etadata for classification into the SVM featurevector. P-values for differences with the

CI P-MCI vs. CN

SEN SPE p ACC SEN SPE p

57 71 � 82 76 87 �
60 70 � 84 77 89 0.03
52.3 71.9 � 83 76 88 0.43

1 2 3 4 5 6 7
.55

0.6

.65

0.7

.75

0.8

.85

0.9

β

orporating both imaging and non-imaging information before performing manifold
nfluence of the metadata. Performance is evaluated for the classification tasks AD vs.
he classification accuracy obtained with the proposed method and the respective
is referred to the web version of this article.)
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a nonlinear and low-dimensional representation of a set of images.
The graph defined by pairwise similarities and used to define the
Laplacian Eigenmaps objective function is extended by support
nodes representing metadata. Weights defined from all image
nodes to all support nodes incorporate the metadata into an ex-
tended objective function. Optimizing this target function leads
to an embedding that is expressed by both pairwise image similar-
ities and the similarity represented by the metadata. While we
used Laplacian Eigenmaps to learn a low-dimensional representa-
tion, other manifold learning techniques such as LLE or ISOMAP
could be used assuming appropriately defined pairwise image dis-
tances are defined. In fact, Yan et al. (2007) showed that most spec-
tral dimensionality reduction techniques can be formulated in one
general graph embedding framework. We have validated the pro-
posed method on a large and diverse clinical dataset (ADNI) apply-
ing linear SVMs to the learned manifold coordinates to
discriminate between different subject groups. Other classification
methods such as linear discriminant analysis (LDA) (Krzanowski,
1988) or kernel SVMs could be applied. While a nonlinear method
might further improve classification accuracy, it requires an addi-
tional parameter or parameters to be optimized. Our results show
that the proposed method is able to produce a classification accu-
racy between clinical groups with an accuracy that compares
favorably to established and well-cited methods in neuroimaging.
Cuingnet et al. (2011) recently presented the comparison of ten dif-
ferent methods for classification on a subset of ADNI similar to that
used in our study. These methods comprise five high dimensional
voxel-based approaches, three methods based on cortical thickness
and two methods based on the hippocampus. Using only imaging
similarities, the proposed manifold-based method outperforms
the majority of the ten methods in individual classification exper-
iments. This is witnessed by a much more balanced performance of
the proposed method resulting in a significantly improved sensi-
tivity together with an only slightly lower specificity. This effect
is particularly striking for the classification between stable and
progressive MCI. Combining imaging and non-imaging information
in one manifold, yields substantial and significant improvements
in classification accuracy compared to the results based on image
similarities or metadata alone. The individual use of ApoE geno-
type, the concentration of Ab1�42 and hippocampal volume, im-
proves classification rates. Using all metadata in one step, further
improves results to 88% for AD vs. CN, 69% for P-MCI vs. S-MCI
and 87% for P-MCI vs. CN. These results highlight the potential role
of such metadata as suitably complementary information to MR
image data in future studies and show the ability of the proposed
method to combine both measures into one biomarker. Several
studies have proposed the combined use of MR imaging with
metadata for AD classification. A combined classifier based on hip-
pocampal volume extracted from MRI and the CSF proteins t-tau
and Ab1�42 has been described by Eckerstrom et al. (2010). The pre-
sented results show that on a small dataset of 68 subjects, a signif-
icant improvement in identifying progressive MCI subjects can be
achieved by combining both measures. Kohannim et al. (2010)
show for the classification between AD and CN on ADNI an
improvement from 82% to 88% when adding CSF-derived measures
to several MRI-based biomarkers. The results based on a similar
subset of ADNI and presented in this paper show that combining
several measures into one combined biomarker with the proposed
method produces comparable classifiacation rates than combining
several measures at the classification stage. This can also be ob-
served from the results presented in Section 3.6.1. In addition to
classification performance, we also evaluated the ability of the
learned manifold to predict clinical variables. Learning a multiple
linear regression model of MMSE vs. manifold coordinates, leads
to significantly improved results compared to what has been pub-
lished using similar data. Gerber et al. (2010) report R2 ¼ 0:05 and
a residual of 2.37 when regressing MMSE vs. the first manifold
coordinate. Incorporating metadata led to further improved regres-
sion statistics in this sample dataset. We discussed two alternative
approaches to incorporate non-imaging information into a mani-
fold classification setting. The proposed method shows better clas-
sification accuracy compared with a method in which image
similarities and non-imaging similarities are combined before per-
forming manifold learning. However, tuning the weighting factor
between the concatenated similarities on the test images, did lead
to results comparable with the proposed method for the sub-com-
parisons of AD vs. CN and P-MCI vs. CN. Compared to an approach
where manifold features are combined with a meta-variable before
performing SVM-based classification, the proposed method gave
slightly superior performance. The strength of the proposed meth-
od, however, lies in the unified representation of information taken
from different measurements. This enables not only classification
but can also help in visualizing the determined biomarker in a clin-
ical environment. Plots of the form shown in Fig. 5 can potentially
enhance interpretation of computer-aided diagnosis (CAD) sys-
tems, such as the one developed in PredictAD (www.predictad.eu).
A clinician can locate the patient studied relative to all other data-
base cases providing information about the severity of the disease
not only the on/off-classification result. Furthermore, the capabil-
ity to define a single continuous biomarker facilitates the definition
of regression models such as the one presented in Section 3.5. We
evaluated the influence of the number of embedding dimensions d
on training data. Robust results where achieved for d 2 f5; 6; 7g.
Assuming normalized weights defined on the metadata and a nor-
malized pairwise similarity measure, the weighting factor c that
dictates the influence of metadata on the manifold coordinates,
can be set globally. While individually tuning c for every type of
metadata is expected to lead to better results, we determined a
weighting based on training data and used the same parameter
for all experiments performed to work with a more realistic
setting. Many state-of-the-art methods for the extraction of bio-
markers for AD from MR images are computationally expensive
(run-time of hours to days) or require complex a priori information
(e.g. manual segmentation in atlas-based methods) (Cuingnet
et al., 2011). Here, we have proposed a fast and robust alternative
to classify subjects that is generic and data-driven. Extending on
our previous work (Wolz et al., 2010a), we plan to further explore
the joint estimation of intra- and inter-subject variation in a man-
ifold learning setting. While the acquisition of longitudinal brain
scans is more expensive and may delay diagnosis, the longitudinal
development of brain structures has been shown to give more
powerful biomarkers, e.g., (Freeborough and Fox, 1997; Smith
et al., 2002; Boyes et al., 2006). Using both longitudinal develop-
ment and metadata to learn a low-dimensional representation
can be expected to further improve the classification results pre-
sented in this crossectional study.
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Appendix A. Parameter settings

This section gives a description of the parameter sets used to
evaluate the proposed method.

A.1. Neighborhood size k

In our experiments, the neighborhood size k used to define
graph G did not substantially influence classification accuracy
when varying between 10 and 50. We set it to k = 20 in all exper-
iments following results presented in (Gerber et al., 2010).

A.2. Weighting of distance measures (a) and dimension d

The optimal number of embedding coordinates d is expected to
depend on the defined influence of the shape- and appearance
measures on the pairwise similarity used. Furthermore different
numbers of dimensions have been shown to produce good results
for different applications in manifold learning of brain images
(Gerber et al., 2010; Wolz et al., 2010b; Jia et al., 2010; Hamm
et al., 2010; Wolz et al., 2010a). To get an overview of how the pro-
posed classification framework reacts to varying the influence of
both distance measures and dimension of the manifold, we per-
formed classification between clinical groups on the 418 ADNI
baseline images not used for testing the classifier (images for
which no CSF information is available). We evaluated the classifi-
cation accuracy for the pairings AD vs. CN, P-MCI vs. S-MCI and
P-MCI vs. CN when varying the dimension d 2 ½1; . . . ;25� and
a 2 ½0; . . . ;0:5� as displayed in Fig. 7. When increasing the embed-
ding dimension, a steep increase in classification accuracy can be
observed from d ¼ 5. Also, the accuracy increases with an in-
creased influence of the deformation-based distance measure be-
fore falling down again. Relatively stable classification results are
achieved when varying d 2 ½5; . . . ;10� and a 2 ½0; . . . 0:25� with a
maximum around d = 5, a = 0.12). To arrive at a robust parameter
set, we set a = 0.125 and evaluated the embedding for
d 2 f5;6;7g. The reported classification rates are averaged over
these dimensions.

A.3. Influence of metadata (c)

The weighting factor c defined in Eqs. (12) and (14) determines
how much the final embedding is influenced by image similarities
and metadata. To evaluate the influence it has on classification
accuracy, we evaluated the performance on the images for which
no CSF measurement is available (N = 418) when using hippocam-
pal volume, which is available for all subjects, as metadata. Fig. 8
shows classification results with a = 0.125 and averaged over
dimensions d 2 f5; 6; 7g plotted over varying c. As c is increased,
initially improved results finally asymptote to the results ob-
tained with standard LE (illustrated with the red line in Fig. 8).
Following these results, we globally set c = 10 for all types of
metadata. Tuning c individually for different types of metadata
is expected to further improve results but requires a more com-
plex training and makes the application to new datasets more
difficult.

A.4. Number of support nodes M

For the discrete metadata in experiment II, ApoE genotype,
M ¼ 3 support nodes are defined, each trivially associated with a

http://www.fnih.org
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possible genotype (z1: subjects that carry at least one e2 allele. z2:
subjects that carry at least one e4 allele. z3: subjects that only carry
the e3 allele). Following Eq. (9), ŵim is set to one if subject i has a
genotype associated with node m, otherwise it is set to zero. For
the continuous variables in experiments III and IV, Ab1�42 concen-
tration and hippocampal volume, a continuous weighting ŵ is de-
fined as described by Eqs. (10) and (11). To accommodate the four
clinical groups (CN, S-MCI, P-MCI, AD), we used M ¼ 4 support
nodes with subintervals �zm;m ¼ 1; . . . ;4 to describe the metadata
as defined in Eq. (10). For experiments V and VI, that use more than
one meta-variable, edges to the support nodes associated with all
variables are defined. This results in M ¼ 8 and M ¼ 11 support
nodes for experiments V and VI respectively with weights defined
as in experiments II–IV.
Appendix B. The Alzheimer’s Disease Neuroimaging Initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was
launched in 2003 by the National Institute on Aging (NIA), the Na-
tional Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-year
public–private partnership. The primary goal of ADNI has been to
test whether serial MRI, positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of MCI
and AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well
as lessen the time and cost of clinical trials. The Principle Investi-
gator of this initiative is Michael W. Weiner, M.D., VA Medical Cen-
ter and University of California – San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range of academic
institutions and private corporations, and subjects have been re-
cruited from over 50 sites across the US and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55–90, to participate
in the research – approximately 200 cognitively normal older indi-
viduals to be followed for 3 years, 400 people with MCI to be fol-
lowed for 3 years, and 200 people with early AD to be followed
for 2 years. For up-to-date information see www.adni-info.org.
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